Tissue engineering of heart valves: PEGylation of decellularized porcine aortic valve as a scaffold for in vitro recellularization

نویسندگان

  • Jianliang Zhou
  • Shidong Hu
  • Jingli Ding
  • Jianjun Xu
  • Jiawei Shi
  • Nianguo Dong
چکیده

BACKGROUND Poly (ethylene glycol) (PEG) has attracted broad interest for tissue engineering applications. The aim of this study was to synthesize 4-arm -PEG-20kDa with the terminal group of diacrylate (4-arm-PEG-DA) and evaluate its dual functionality for decellularized porcine aortic valve (DAV) based on its mechanical and biological properties. METHODS 4-arm-PEG-DA was synthesized by graft copolymerization of linear PEG 20,000 monomers, and characterized by IR1H NMR and 13C NMR; PEGylation of DAV was achieved by the Michael addition reaction between propylene acyl and thiol, its effect was tested by uniaxial planar tensile testing, hematoxylin and eosin (HE) and scanning electron microscopy (SEM). Gly-Arg-Gly-Asp-Ser-Pro-Cys (GRGDSPC) peptides and vascular endothelial growth factor-165 (VEGF165) were conjugated onto DAV by branched PEG-DA (GRGDSPC-PEG-DAV-PEG-VEGF165). RESULTS Mechanical testing confirmed that PEG-cross-linking significantly enhanced the tensile strength of DAV. Immunofluoresce confirmed the GRGDSPC peptides and VEGF165 were conjugated effectively onto DAV; the quantification of conjunction was completed roughly using spectrophotometry and ELISA. The human umbilical vein endothelial cells (HUVECs) grew and spread well on the GRGDSPC-PEG-DAV-PEG-VEGF165. CONCLUSIONS Therefore, PEGylation of DAV not only can improve the tensile strength of DAV, and can also mediate the conjugation of bioactive molecule (VEGF165 and GRGDSPC peptides) on DAV, which might be suitable for further development of tissue engineered heart valve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recellularization of decellularized heart valves: Progress toward the tissue-engineered heart valve

The tissue-engineered heart valve portends a new era in the field of valve replacement. Decellularized heart valves are of great interest as a scaffold for the tissue-engineered heart valve due to their naturally bioactive composition, clinical relevance as a stand-alone implant, and partial recellularization in vivo. However, a significant challenge remains in realizing the tissue-engineered h...

متن کامل

Recellularization of a novel off-the-shelf valve following xenogenic implantation into the right ventricular outflow tract

Current research on valvular heart repair has focused on tissue-engineered heart valves (TEHV) because of its potential to grow similarly to native heart valves. Decellularized xenografts are a promising solution; however, host recellularization remains challenging. In this study, decellularized porcine aortic valves were implanted into the right ventricular outflow tract (RVOT) of sheep to inv...

متن کامل

Tissue engineering of heart valves: decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells.

BACKGROUND Tissue-engineered or decellularized heart valves have already been implanted in humans or are currently approaching the clinical setting. The aim of this study was to examine the migratory response of human monocytic cells toward decellularized porcine and human heart valves, a pivotal step in the early immunologic reaction. METHODS AND RESULTS Porcine and human pulmonary valve con...

متن کامل

Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium

Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emer...

متن کامل

*The Effects of Scaffold Remnants in Decellularized Tissue-Engineered Cardiovascular Constructs on the Recruitment of Blood Cells

Decellularized tissue-engineered heart valves (DTEHVs) showed remarkable results in translational animal models, leading to recellularization within hours after implantation. This is crucial to enable tissue remodeling. To investigate if the presence of scaffold remnants before implantation is responsible for the fast recellularization of DTEHVs, an in vitro mesofluidic system was used. Human g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2013